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LETTER TO THE EDlTOR 

Self-consistent signal-to-noise analysis and its application to 
analogue neural networks with asymmetric connections 
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t Department of Applied Physics, Tokyo Institute of Technology, Ohokayama, Meguroku, 
Tokyo. Japan 

Depament of Electronics, Tokai University, Kitakanamc 1117, Hirawuha-shi, 
Kanagawa, Japan 

Received 29 October 1991 

Abstnet. A new systematic method is proposed for the analysis afthc storage capacity of 
analogue neural networks with general input-output relations. It is based on the self- 
consistent signal-to-noise analysis in which renormalization of the signal part in the local 
field is properly performed. A remarkable feature ofthe present recipe, which in the case 
of symmetric analogue networks yields the Same result as obtained by replica calculations. 
is the capability of dealing with asymmetric networks of analogue ncurons. The theory is 
applied far the asymmetric network in which each neuron is loaded with biased patterns 
while some neurons are assigned only to extend inhibitory synaptic couplings free of 
learning. 

The performance of king spin type neural networks with symmetric connections as a 
content addressable memory has been extensively investigated by means of replica 
symmetric calculations [l, 21 in spin glass theory. Very little is known, however, about 
the network performance of analogue neural networks with asymmetric connections 
which have a relevance with physiological nervous systems. Asymmetry as well as 
analogue property of neurons has so far defied the use of statistical mechanical 
approach. It will thus be of vital importance to develop a systematic method to cope 

application of replica calculations to obtaining the storage capacity of the analogue 
neural networks with symmetric couplings and a sigmoid type input-output 
relation [3,4]. 

In the present paper we develop a self-consistent method based on signal-to-noise 
analysis [5-81 for evaluating the storage capacity allowing small retrieval errors for 
analogue neural networks with general input-output relations, and show that it can 
be applied to'certain types of networks with asymmetric connections. Our systematic 
method, which in the case of symmetric analogue networks yields the same result as 
that of our recent replicas symmetric analysis [3], differs from the known recipe [9-111. 
The latter, which involves the naive treatment of signal-to-noise analysis, seemingly 
gives the same result as obtained by replica calculations for the stochastic networks 
of king spin type [ 1,2]. That naive treatment, however, is considered to be only an 
approximation in the case of feedback type neural networks like the fully connected 
models of Hopfield type even if the result itself is not wrong in some cases, since no 
distinction has been made between the analogue and the stochastic king spin type 
networks. The problem of the Onsager reaction term in the so-called TAP (Thouless, 
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Anderson and Palmer) equation [U, 131 should be taken seriously, since that term has 
been found to play a key role in discriminating those two kinds of networks [3]. Cannot 
any signal-to-noise type analysis go beyond an approximate description for what is 
obtained from the replica symmetric calculations? The answer is affirmative. The 
characteristic feature of the present self-consistent signal-to-noise analysis is that the 
separation of the signal part from the noise one in the local field of each neuron is 
performed legitimately and systematically for analogue neural networks with deter- 
ministic updating, which explicitly define the TAP equation without the Onsager reaction 
term. 

We begin by formulating an asymmetric neural network of N analogue neurons 
to show how the self-consistent signal-to-noise analysis applies to networks with 
asymmetric connections. Neurons which have a graded response given by a real-valued 
function F(u) of membrane potential U are assumed to be connected with each other 
through asymmetric synaptic couplings .I, ( j  # i) of the form 

where {&“} (a=  1,. . . , p ,  i =  1,. . . , N )  represent p ( = a N )  sets of biased random 
patterns for memories which are specified by independent identical distribution P,(g?)) 
with mean a:  

Here we assumed that only the synaptic connections extended from wN neurons 
specified by T~ = 1 are subject to the Hebb learning rule whereas those from the other 
( 1 -  w ) N  neurons with qj=- l  are inhibitory ( J > O )  and free of learning. We also 
note that w controls the degree of asymmetric dilution in the fully connected model, 
with w = 1 and w = 0 making the system symmetric. 

The analogue network dynamics describing the conservation law of currents Rowing 
through the membranes of neurons can usually be written, in terms of membrane 
potential U’S as 

d 
i =  1,. . . , N - u ~ = - u ~ + ~  JV,F(uj )+I  

dr j + i  

where I is an external current. Since the weak asymmetry in the present scheme of 
couplings (1) can be assumed still to ensure the existence of fixed-point type attractors 
for the above dynamics, we are allowed to be concerned with equilibrium states of 
the network. They are determined by 

xi = F(hi)  i =  1 , .  . . , N (2) 

with xi representing output F(ui) and hi local field: hi =xjti Jipj+ I. 
Defining modified overlaps 

1+q. “” =-x 1 ( & I -  (I) y xj p = 1 , .  . . , p 
N I  
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as order-parameters for the present system, we proceed to deal with retrieval solutions 
to equation (2) in which m”] = O( 1) and m‘” = O( l/m) for p 2 2. This corresponds 
to the assumption that pattern {t“)} is chosen for the condensed one in the Amit- 
Gutfreund-Sompolinsky theory [l]. Note that the usually defined overlap 

is given by 

Expressing the local field hi in terms of the overlaps (3), one obtains 

(4) 
l + V i  hi = 1 (.$PI- a)m‘+’ -Im“)+ I - a ( l  -a ’ )  - F(hi) ” 2 

which will be solved to yield x, = F ( h j ) = ~ ( ~ ~ ( ~ I ” - a ) m ‘ ” - l m ‘ o ’ + I ;  q j ) .  
The self-consistent signal-to-noise analysis has its basis in the systematic splitting 

of the hi into signal and noise parts. To properly extract noise part, which originates 
from the sum involving m‘”’ (p>2) ,  we compute m‘”(pz-2)  by expanding F in the 
RHS of (36) up to first order in (6$*’-a)m1*’: 

(5) 
Noting that the argument of 9 does not contain 6‘”’ and that 1/N I,. . .can be 
replaced by average ( . . . ) over .$‘s and q, we obtain from equation (5) 

with 

K = I - ( l - a ’ ) w ( i . ‘ (  e+* 1 ( j ) ; q j = l ) )  (7) 

where f i (xU+” ( j ) ;  qj )  is the shorthand notation for e(xutfi ( t ~ ” ’ - a ) m ” ’ - J m ‘ O 1 +  
I; qj).  Keeping in mind that the j = i term in the sum in equation (6) should contribute 
to the signal part in the local field, we obtain from equations (4) and (6) 
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with 

Here, in deriving equation (8) we safely replaced &x.,,,. ( i ) ;  q,) by $(xu ( i ) ;  v i ) =  
F(hi) .  Noting that i is a sum of almost uncorrelated random variables, with (i) = 0 and 

we will he allowed to claim that f represents the noise obeying the Gaussian distribution 
with mean 0 and variance U’ = (E2). It then follows that the local field hi in turn is 
distributed according to a non-Gaussian distribution, owing to the appearance of the 
term involving F(h,) itself in the RHS of equation (8). From the renormalized expression 
(8) for h, output Y, F ( h )  turns out to he implicitly determined as a function o f f  by 

Y,, = F ((((1) - a)m‘l )  - Jm(o)+ I 

( 1 + 1) ) Y, + f ) 1 ) = t , - .  
a(1 -a2)(1 - K )  

2K 
+ 

Noting that the site summation 1/N x j . .  .in the expressions for m‘” and m‘” as well 
as the average ( . . .) in equations (7) and (10) can be written in terms of the average 
with respect to 6 and noise f obeying 

we have 

and 

K = l - ( l - a ’ ) w  -Y+ . (d”i >,. 
In writing the last equation, we have also noted the following requirement. In order 
to ensure that the whole process of separating signal from noise in the local field be 
performed self-consistently, the procedure for obtaininj m‘”’(p 3 2) should be based 
on use of the renormalized F ( h i ) ,  i.e. Y,, rather than F in equation ( 5 ) .  

With the change of variables, 

i z -= 1 - K  
&=U, U =  and K’o’ ‘ = ( 1  - a’)’aw (1 -a ’ )w  U 

we arrive at a more familiar form of equations, which read 
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{l  - (1 - a2)wU)'r 
(1 - a y w  

and r =  9 =  

Setting F(u) = tanh pu (p:  analogue gain), w = 1 (symmetric network) and a = 0, 
we see that the result previously obtained by replica calculations is recovered [3; 141. 
The presence of rY, in the argument of F in equation (16), which makes the Y be 
determined only implicitly, was found to give rise to a slight increase in the storage 
capacity of the analogue networks [3,14], compared with that of the Ising spin network 
with inverse temperature p. That additional term arises as a consequence of the absence 
of the Onsager reaction term for the analogue networks. In other words, the term r Y,, 
which has resulted from the renormalization of signal part (see equation (8)) turns 
out to be the negative of the Onsager reaction term for the corresponding king spin 
network. In this sense, the present method elucidates the structure of the Onsager 
reaction term itself of the Ising spin networks. It is then worth noting that the 
self-consistent signal-to-noise analysis developed in our study is also available for the 
stochastic networks of Ising type. In fact, as soon as one applies the present analysis 
to the TAP equation with the Onsager reaction term for the stochastic Ising network 

Sompolinsky [ I ]  owing to the compensation of the above-mentioned additional term 
by the presence of the Onsager reaction one. 

We finally evaluate the storage capacity as well as the phase diagram of the present 
asymmetric network in the case where f l u )  = tanh pu and I = 0. We are interested in 
exploring the effect of decreasing w on the memory retrieval performance together 
with the existence of spin-glass phase in the asymmetric system. The phase transition 
line between m"' = m"" = q = 0 (para) and m'" = m"' = 0, q # 0 (spin-glass) is easily 
determined from equations (14)-(16) to be 

[I?!, nne CBE ezsi!y abt2in exa.*!y the same res-!: 2s. :!la: nf AT;:, C-.;:f:ei;nd and 

Before displaying the result of the present analysis for the storage capacity, we 
note that the condition for retrieval with no errors in the limit p + m, i.e. 
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can be obtained, based on probability theory 6, 7, as 

The threshold arises from the fact that the naive signal part for the local field given 
by the argument of the sgn function vanishes at w = wth. 

The storage capacity near saturation is determined by equations (12)-(16) as the 
limit of existence of the retrieval state (m“’Z0). We solved equations (12)-(16) 
numerically to obtain the phase diagram showing the storage capacity in the n -p-’ 
plane, an example of which is given in figure 1. The effect of dilution with decreasing 
w on the storage capacity in the limit p + m is also shown in figure 2 for several values 
of J (solid curves). For comparison, the estimate of storage capacity inferred from 
probability theory a y b =  C(a,  w,J)aT with n$ chosen such that (1-la1)2n:= 
n(a, w = 1)’’ is plotted in this figure (broken curves). It may be interesting to observe 
that there exist no thresholds in w for the onset of the retrieval state within the context 
of the self-consistent signal-to-noise analysis, in contrast to the suggestion from proba- 
bility theory. Computer simulations on the networks with large N (N = 3000-5000), 
indeed, support the result of the self-consistent signal-to-noise analysis for the storage 
capacity of the saturation limit even below the threshold suggested by probability theory. 

To conclude, we have presented a heuristic description of the self-consistent 
signal-to-noise analysis to evaluate the storage capacity of the analogue neural networks. 
The new recipe proves to be very useful in that not only can it be applied to a certain 
class of asymmetric networks including the present case but also the calculation involved 
is quite elementary as well as of perspective unlike the replica method. Dealing with 
analogue networks with such sparse encoding as taken up by Buhmann er al[16] and 

-.- 
retrieval ‘\\ 

0.02 0.04 0.06 0.08 a 
Flpre 1. The phase boundaries limiting the regions of retrieval state and spin-glass one 
for the present neural network8 without self-coupling in lhe case of symmetric coupling 
( w =  I: the solid curve) and asymmetric coupling (w=O.7 ,  I =  I: the broken NNC) for 
a = 0.3. We sec that the weak asymmetry of the present type does not change the qualitative 
feature of the phase diagram. 
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Figure 2. Effect of the asymmetric dilution of the synaptic couplings with learning rule on 
the storage capacity (I in the fully connected model. Plats of (I against w in the limit B + m 
are given for J = O  (a), 1 (b). IO (e) and 100 (d). The bias of the stored patterns is set to 
(I = 0.2. For comparison, w dependence of the storage capacity with no retrieval errors 
sdggested by probability theory is also displayed (broken curves): a:mb= C(a, w, J h : ,  
where m: is chosen so as to normalize its vali?s at the symmelric limit w = 1 (see text). 
Although the behaviours of OL with decreasing w around w = I are seen to agree with each 
other for each value of 1 > 0, remarkable differences start to appear with further decreasing 
of w owingto thcexistenceafthethrcsholdsforthestaragccapacityfromprobabilitytheory. 

Tsodyks and Feigel'man [17] will be straightforward, say by taking F ( u ) =  
1/2(l+tanhpu), since the input-output relation F(u) is free of a constraint such as 
being odd. A further study, however, will be required to discuss the appearance of the 
states with the replica symmetry breaking [ 11 from the view point of the validity of 
the self-averaging property used in the present study. Details as well as applications 
*,. .l.̂ -_ .... ..- I_^ ... :r l .  .."A -..- *.. .-.." -c,,......l:-"" .̂.A I=/.,\ ... :I, I.- "*..A:-A -to*... I.--- 
,U L L I S  LIT,WULr.J W L U 1  * I I I U Y *  L y p 1  U1 * " Y p " 1 L L ~ , "  .I.," ' ,", w111 "C D L U U l r U  C,ICiWl*LICLC. 

References 

[I] Amit D J, Gutfreund H and Sompolinsky H 1987 Ann. Phys. I73 30 
[2] Amit D J 1989 Modeling Brain Function (Cambridge: Cambridge University Press) 
[3] S h i h  M and Fukai T 1990 J. Phys. A: Math. Gen. 23 LIOW 
[4] Fukai T and Shiino M 1990 Phys. Re". A 42 7459 
[5] Amari S and Maginu K 1988 Neural Nerworkr I 63 
[6] Weisbveh G and Fogelmann-Soulie F 1985 1. Physique Lell. 46 U23 
[7] McEliecc R J, Posner E C, Rodemich E Rand Venkatesh S S 1987 IEEE Tmns. Inform. Theor. IT-33 461 
[8] Damany E, Kinel Wand Meir R 1989 1. Phys. A: Morh. Gen. 22 2081 
[9] Perctto P 1988 1. Physique 49 711 

,*A, cl_.-: v IMn n&_._:__, .,-,-,. "I .r L L.... ̂ _L_ ,e:..-" ,,,-_,A o^:--.ic^, 
LL", ".a',, I ,I," ",,J"uL, m w s u  ", I.SY,", ,.C,W",U ,U,,,&Lp".'. ""I." l*.z,ru"r, 

[Ill Marcus C M. Waugh F R and Wcstclvclt R M 1990 Phys. Reo. A 41 3355 
[I21 Thoulsss D I, Andenon P W and Palmer R G 1977 Phil Ma$. 35 593 
[I31 Mnard M, Parisi G and Virasoro M A 1987 Spin Gloss neory  and Beyond (Singapore: World Scientific) 
[I41 Kuhn R, Bos S and van Hcmmcn I L 1991 Phys. Rev. A 43 2084 
[IS] Amit D J, Gutfreund H and Sompalinsky H 1987 Phys Re". A 35 2293 
[la] Buhmann J, Divko R and Schultcn K 1989 Phys. Reo. A 39 2689 
[17] Tsodyh M V and Feigcl'man M V 1988 Europhys. Lett 6 101 


